Incremental Semantic Models for Continuous Context-Sensitive Speech Recognition∗
نویسندگان
چکیده
Context-sensitive speech recognizers use environment or discourse information to influence language model probabilities used in speech decoding. This is usually done by switching language models between utterances. This paper explores the use of a continuously context-sensitive language model that uses incremental interpretation to update context at every time step in decoding. Because it only explores the world model incrementally, this semantic model does not need to be pre-computed, raising the possibility of representing continuouslyvariable concepts as semantic referents (such as time points and measurements, or real numbers themselves), and supporting dynamic reasoning about consequences of actions during speech decoding.
منابع مشابه
Improved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition
Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملA method for noise-robust context-aware pattern discovery and recognition from categorical sequences
An efficient method for weakly supervised pattern discovery and recognition from discrete categorical sequences is introduced. The method utilizes two parallel sources of data: categorical sequences carrying some temporal or spatial information and a set of labeled, but not exactly aligned, contextual events related to the sequences. From these inputs the method builds associative models able t...
متن کاملAllophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کامل